

UNIVERSITY OF LIFE SCIENCES "KING MIHAI I" FROM Timisoara Multidisciplinary Conference on Sustainable Development 30-31 May 2024

PROBIOTICS SUPPLEMENTATION TO MULBERRY SILKWORM B. MORI

Anca Gheorghe¹, Mihaela Hăbeanu¹, Teodor Mihalcea¹, Georgeta Diniță², Adela R. Moise³

¹ Research Station for Sericulture Băneasa, 013685, Bucharest, Romania

- ² University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464, Romania
- ³ University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 400372, Romania

INTRODUCTION

• The *Bombyx mori* L. silkworm is an economically important lepidopteran insect for silk production due to its ability to convert protein from mulberry leaves into silk (Yeruva et al. 2020; Hassan 2020). It is known that silkworms, as a monophagous insects, require certain nutrients (proteins, amino acids, essential sugars, fatty acids, vitamins and micronutrients)

OBJECTIVE

This review highlighted the trends in silkworm nutrition by using microbial species as natural ways to supplement the mulberry leaves and improve silkworms' larval and cocoon traits. The definition, characteristics and modes of action of probiotics, the intestinal microbiota, and the functional role of gut bacteria in silkworms are

for their growth and production that are provided by the fresh mulberry leaves (*Morus* spp.) as unique natural source of feed (Saviane et al. 2014; Zhang et al. 2019; Ayandokun and Alamu, 2020). The quality of mulberry leaves depends on environmental conditions and affects the cocoons production and silk quality. Silkworm larvae's nutrition and health status are the main factors influencing silk production.

also presented in this review. The studies that used probiotic supplementation of mulberry leaves in silkworms, with special emphases on *Lactobacillus* and *Bacillus* spp., and the main results on productivity and health status were summarised.

RESULTS AND DISCUSSIONS

- Food and Agriculture Organization of the United Nations and World Health Organization (FAO 2002), defined probiotics as "live microorganisms which, when administered in adequate amounts, confer a health benefit on the host". The selection of microorganisms as probiotics requires specific properties or characteristics related to their safety, performance, and technological aspects (Priyadharshini et al. 2021). The major mechanisms of action of probiotics: i). epithelial barrier improvement, ii). increased adhesion to the intestinal mucosa, iii). inhibition of pathogen adhesion, iv). competitive exclusion of pathogenic microorganisms, v). production of anti-microorganism substances, and vi). immune system modulation (Bermudez-Brito et al. 2012).
- Probiotic microbial flora activity in the host's gut may improve feed absorption and digestion efficiency, boosting the host's production and assimilation of proteins (Rowland et al. 2018). Additionally, probiotics break down easily absorbed substances and can even generate specific vitamins, which may aid in nutritional absorption. According to the theory that beneficial microbial ecology is crucial for eukaryotic metabolism, insects require a variety of enzymes from their gut microbial flora to aid in the digestion of feed components. These enzymes can then help release other molecules, such as fermentable sugars and amino acids, that benefit the insect's growth (Liang et al. 2015).
- The microbial species Lactobacillus, Bifidobacterium, Bacillus, Streptococcus, and Saccharomyces are the most often evaluated probiotics used for insects (Guarner et al 2017).

Species	Functions	Reference	Probiotic	Dose/ Concentration	Instar	Main results	Reference
Lactobacillus	\checkmark Stimulated growth factors and	improved Yeruva et al., 2020;	L. plantarum	ns	ns	↑ larval body weight, cocoon, shell weight and pupation rate.	Sing et al., 2005
	economic characteristics.	Sing et al., 2005; Suraporn et al., 2015; Suraporn and	L. acidophilus	10^8 cfu/ml	3 to 5 th larval instars	 ↑ survival ratio, mature larval weight, pupation ratio, cocoon weight and cocoon-shell ratio. ↑ silk yield and silk harvest. 	Suraporn et al., 2015
Terenius, 2021. Bifidobacterium ✓ Immunomodulatory effect by increasing the Taha et al., 2017 activity of protease, amylase and invertase; improve production of raw silk.		L. casei	10^8 cfu/ml	5 th instar	 ↑ larval weight, cocooning and pupation ratio, and economic characters (cocoon weight and size) of larvae infected with microsporidium <i>Nosema bombycis</i>. ↑ feed digestion and nutrient absorption. 	Suraporn et al., 2021	
Bacillus subtilis	<i>cillus subtilis</i> ✓ Release secondary metabolites, vitamin B Li et al., 2022 synthesis, produce antimicrobial peptides (AMP), and increase resistance.		<i>L. rhamnosus</i> <i>B. bifidum</i> and their mixture	3 and 6%	4 to 5 th larval instars	<i>L. rhamnosus</i> + <i>B. bifidum</i> \uparrow larval performance and tissue growth, \uparrow feed intake and assimilation, followed by <i>L. rhamnosus</i> \rightarrow <i>Bifidum</i> .	Moustafa and Soliman, 2019
<i>Bacillus aryabhattai</i> and <i>Bacillus</i> sp. <i>Bacillus megaterium</i>	 i ✓ Cellulolytic activity. ✓ Glycolysis of starch. 	Pandiarajan and Revathy, 2020 Prasanna et al., 2014				Both concentrations ↑ economic and silk (length, weight and size) parameters with no significant differences between them. Lower concentrations (3%) are recommended.	
Bacillus pumilus	 Digestive system and protection against agents nuclear polyhedrosis virus (BmNI Production of extracellular enzymes 	t antiviral Liu et al., 2018 PV). Mala and Vijila 2018	Spirulina, S. cerevisiae,	300 ppm of each	ns	Spirulina and yeast \uparrow cocoon characteristics, fibroin content and silk quality, followed by <i>L. acidophilus</i> and <i>L. sporogens</i> .	Masthan et al., 2017
Bacillus sn	 ✓ Production of extracentual enzymes. ✓ Digestion and synthesis of linase enzyme 	$\frac{1}{2} \qquad \qquad Feng et al. 2011$	L. acidophilus and				
Brevibacterium sp.,	, Digestion and Synthesis of hpuse enzyme		L. sporogens	nc	$\frac{1}{2}$ to 5^{th}	<i>R</i> amulaliquefaciens \uparrow silk gland proteins followed by	Sobar et al 2016
Corynebacterium sp.,			D. cereus, R subtilis	115	5 to 5 ^m	combined bacterial diet $\rightarrow L$. casei $\rightarrow B$. cereus $\rightarrow L$. plantarum $\rightarrow B$ subtilis	Sekal et al., 2010
Staphylococcus sp.,			B. amvloliauefaciens. I		instars		
Klebsiella sp., and	l		casei.		mstars	<i>B. amyloliquefaciens</i> \uparrow silk gland carbohydrates followed by <i>B.</i>	
Stenotrophomonas			L. plantarum			<i>cereus</i> \rightarrow combined bacterial diet \rightarrow <i>B. subtilis</i> \rightarrow <i>L. plantarum.</i>	
_sp.			and their mixture			<i>B. amyloliquefaciens</i> \uparrow silk gland lipids followed by <i>B. cereus</i> \rightarrow	
Enterococcus sp. and	I ✓ Mechanism of defence against infection.	Sun et al., 2016				combined bacterial diet $\rightarrow L$. casei $\rightarrow L$. plantarum $\rightarrow B$. subtilis.	
Staphylococcus sp.						<i>B. amyloliquefaciens</i> \uparrow fibroin content followed by <i>B. cereus</i> =	
Enterococcus	✓ Host metabolism (production of metabolism)	olites and Liang et al., 2018				combined bacterial diet $\rightarrow L$. plantarum $\rightarrow L$. casei $\rightarrow B$. subtilis.	
mundtii	lactic acid).					<i>B.</i> amyloliquefaciens \uparrow digestion and nutrient absorption, \uparrow	
Enterococcus _casseliflavus	 ✓ Growth and development through the sy L-tryptophan. 	onthesis of Liang et al., 2022				protein synthesis and deposition in the body, \uparrow silk gland and cocoons.	
Enterococcus faecalis	s ✓ Immunity against infection.	Zhang et al., 2010				<i>L. casei</i> \uparrow length and weight of larval body and \uparrow cocoon weight.	
Staphylococcus gallinarum	ccus \checkmark Defence mechanism.Gibson et al., 20191					<i>L. casei</i> ↑ protects against harmful bacteria and promotes growth rather than immune response.	
Staphylococcus gallinarum SWGB 7 and Staphylococcus arlettae SWGB 16	 Stimulated growth, improved economic immune system. 	traits and Saranya et al., 2019				This study demonstrates the possible probiotic-boosting effect of <i>B. amyloliquefaciens, L. casei, B. cereus,</i> and a microbial community on silkworm physiology, metamorphosis, and silk production.	
Streptomyces noursei	i 🗸 Antimicrobial activity in relation to	o disease Subramanian, 2010;	B. licheniformis BMGB42	10^4 cfu/ml	5 th instar	<i>B. licheniformis</i> followed by <i>B. licheniformis</i> + <i>B. niabensis</i>	Mala and Vijila.
Enterobacter aerogenes, pneumoniae sp.	 control. ✓ Growth and development, host r chemical pesticide degradation entomopathogen host antagonism intera 	Mohanraj et al., 2014 resistance, Ramesh et al., 2009 n, and actions.	<i>B. niabensis BMGB17</i> and their mixture	10^6 cfu/ml 10^8 cfu/ml		(10^{6} cfu/ml) \uparrow larval weight, effective rate rearing, cocoon weight, shell weight, pupal weight, shell ratio, silk productivity and filament length; \downarrow finer denier; \downarrow larval mortality due to disease incidence.	2018
Pneumonia, Yersinia <u>enterocolitica</u>	CONCLUSIONS		Lact-Act (commercial probiotic based on <i>L</i> <i>sporogens, B. thuringiensis</i> yeast hydrolysate, a amylase, vitamin-minera mix)	11 2. 5, - 11		↑ larval survival when exposed to bacterial pathogens (<i>B. thuringiensis</i> var. sotto. and <i>S. aureus</i>).	Rajakumari et al., 2007

Role of gut bacteria species in *B. mori* silkworm host

Effects of probiotics supplementation of mulberry leaves in silkworm

- Enhancing the quality of mulberry leaves is crucial for improving the appetite and/or feed quality, as it is one of the primary factors influencing the silkworms development in larval instars.
- o Findings from the literature indicate that probiotics supplementation to mulberry leaves is a

